首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   2篇
工业技术   181篇
  2020年   5篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   6篇
  2010年   8篇
  2009年   7篇
  2008年   8篇
  2007年   13篇
  2006年   13篇
  2005年   14篇
  2004年   9篇
  2003年   10篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   7篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1982年   1篇
  1976年   6篇
  1975年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   3篇
  1965年   1篇
  1963年   1篇
排序方式: 共有181条查询结果,搜索用时 31 毫秒
61.
This paper presents a method for continuous monitoring of ozone in water by using the Indigo colorimetric technique. The details of an instrument developed and used for this purpose are explained. Data obtained using the continuous ozone reading equipment in monitoring the ozone levels are presented. The instrument also can be used to measure the decay of ozone in ozonated waters, continuously giving a very accurate measure of ozone decay coefficients.  相似文献   
62.
A new electrostatic discharge (ESD) protection design, by using the substrate-triggered stacked-nMOS device, is proposed to protect the mixed-voltage I/O circuits of CMOS ICs. The substrate-triggered technique is applied to lower the trigger voltage of the stacked-nMOS device to ensure effective ESD protection for the mixed-voltage I/O circuits. The proposed ESD protection circuit with the substrate-triggered technique is fully compatible to general CMOS process without causing the gate-oxide reliability problem. Without using the thick gate oxide, the new proposed design has been fabricated and verified for 2.5/3.3-V tolerant mixed-voltage I/O circuit in a 0.25-/spl mu/m salicided CMOS process. The experimental results have confirmed that the human-body-model ESD level of the mixed-voltage I/O buffers can be successfully improved from the original 3.4 to 5.6 kV by using this new proposed ESD protection circuit.  相似文献   
63.
This paper presents a new electrostatic discharge (ESD) protection scheme for IC with power-down-mode operation. Adding a VDD ESD bus line and diodes into the proposed ESD protection scheme can block the leakage current from I/O pin to VDD power line and avoid malfunction during power-down operation. The whole-chip ESD protection design can be achieved by insertion of ESD clamp circuits between VSS power line and both the VDD power line and VDD ESD bus line. Experiment results show that the human-body model (HBM) ESD level of this new scheme can be greater than 7.5 kV in a 0.35-/spl mu/m silicided CMOS process.  相似文献   
64.
The layout dependence on ESD robustness of NMOS and PMOS devices has been experimentally investigated in details. A lot of CMOS devices with different device dimensions, layout spacings, and clearances have been drawn and fabricated to find the optimized layout rules for electrostatic discharge (ESD) protection. The main layout parameters to affect ESD robustness of CMOS devices are the channel width, the channel length, the clearance from contact to poly-gate edge at drain and source regions, the spacing from the drain diffusion to the guard-ring diffusion, and the finger width of each unit finger. Non-uniform turn-on effects have been clearly investigated in the gate-grounded large-dimension NMOS devices by using EMMI (EMission MIcroscope) observation. The optimized layout parameters have been verified to effectively improve ESD robustness of CMOS devices. The relations between ESD robustness and the layout parameters have been explained by both transmission line pulsing (TLP) measured data and the energy band diagrams.  相似文献   
65.
A new CMOS on-chip electrostatic discharge (ESD) protection circuit which consists of dual parasitic SCR structures is proposed and investigated. Experimental results show that with a small layout area of 8800 μ2, the protection circuit can successfully perform negative and positive ESD protection with failure thresholds greater than ±1 and ±10 kV in machine-mode (MM) and human-body-mode (HBM) testing, respectively. The low ESD trigger voltages in both SCRs can be readily achieved through proper circuit design and without involving device or junction breakdown. The input capacitance of the proposed protection circuit is very low and no diffusion resistor between I/O pad and internal circuits is required, so it is suitable for high-speed applications. Moreover, this ESD protection circuit is fully process compatible with CMOS technologies  相似文献   
66.
To clarify the mechanism leading to the development and rupture of intracranial aneurysms, tensile strength and viscoelastic parameters of 22 human saccular aneurysms were investigated. Meridional and circumferential strips from the thin and the thick part of the aneurysm sack and 18 control strips from the basilar artery of 8 patients with pathologies not affecting the cerebral arterial system were studied. The length of the strips was increased in 200- microm steps, while distending force was recorded. Tensile strength and viscoelastic parameters were computed. In both directions, tensile strength of thick strips was significantly lower than that of controls. In the meridional direction, tensile strength of thin strips was significantly larger than that of thick ones (14.5 +/- 4.1 x 10(6) vs. 7.5 +/- 2.0 x 10(6) dyn/cm2, p < 0.05). In the circumferential direction, thin strips tore at lower strain values than thick ones (29 +/- 4 vs. 55 +/- 16%, p < 0.05). Viscoelastic parameters changed in parallel. In circumferential direction, values of thick and thin strips were significantly lower than those of controls. In the meridional direction, values of thin strips were significantly higher than those of the thick ones. These observations show that characteristic mechanical deterioration and steric inhomogeneities accompany the loss of smooth muscle cells and the derangement of connective tissue elements in the wall of intracranial aneurysms, which may explain certain steps in their initiation, enlargement and rupture.  相似文献   
67.
The capacitive load, from the large electrostatic discharge (ESD) protection device for high ESD robustness, has an adverse effect on the performance of broad-band RF circuits due to impedance mismatch and bandwidth degradation. The conventional distributed ESD protection scheme using equal four-stage ESD protection can achieve a better impedance match, but degrade the ESD performance. A new distributed ESD protection structure is proposed to achieve both good ESD robustness and RF performance. The proposed ESD protection circuit is constructed by arranging ESD protection stages with decreasing device size, called as decreasing-size distributed electrostatic discharge (DS-DESD) protection scheme, which is beneficial to the ESD level. The new proposed DS-DESD protection scheme with a total capacitance of 200 fF from the ESD diodes has been successfully verified in a 0.25-mum CMOS process to sustain a human-body-model ESD level of greater than 8 kV  相似文献   
68.
A new Schmitt trigger circuit, which is implemented by low-voltage devices to receive the high-voltage input signals without gate-oxide reliability problem, is proposed. The new proposed circuit, which can be operated in a 3.3-V signal environment without suffering high-voltage gate-oxide overstress, has been fabricated in a 0.13-/spl mu/m 1/2.5-V 1P8M CMOS process. The experimental results have confirmed that the measured transition threshold voltages of the new proposed Schmitt trigger circuit are about 1 and 2.5 V, respectively. The new proposed Schmitt trigger circuit is suitable for mixed-voltage input-output interfaces to receive input signals and reject input noise.  相似文献   
69.
Latchup failure which occurred at only one output pin of a power controller IC product is investigated in this work. The special design requirement of the internal circuits causes the parasitic diode that is inherent between the n-well and p-substrate to be a triggering source of the latchup occurrence in this IC. The parasitic diode of the internal PMOS was easily turned on by an anomalous external signal to trigger the neighbor parasitic Silicon Controlled Rectifier (SCR) path which causes latchup event in the CMOS IC product. Some solutions to overcome this latchup failure have been also proposed in this paper.  相似文献   
70.
ESD/latchup are often two contradicting variables during IC reliability development. Trade-off between the two must be properly adjusted to realize ESD/latchup robustness of IC products. A case study on SERIAL Input/Output (I/O) IC’s is reported here to reveal this ESD/latchup optimization issue. SERIAL I/O IC features a special clamping property to wake up PC’s during system standby situation. Along with high voltage operation, Input/Output (I/O) protection design of this IC becomes one of the most challenging tasks in the product reliability development. In the initial development phase, ignorance of latchup susceptibility resulted in severe Electrical Overstress (EOS) damage during latchup tests, and also gave a false over estimate of ESD protection threshold through parasitic latchup paths. The latchup origin is an output PMOS and floating-well ESD triggering NMOS beside the PMOS, and the main fatal link is this high-voltage (HV) NMOS connecting to a bi-directional SCR cell. This fatal link led to totally five latchup sites and three latchup paths clarified through careful and intensive FIB failure analysis, while this powerful SCR ESD device without appropriate triggering mechanism still could not provide sufficient product-level ESD hardness. Owing to there being no design window between ESD and latchup, the original several protection schemes were all abandoned. Using this bi-directional SCR ESD cell and proper triggering PNP bipolar transistors, a new I/O protection circuit could sustain at least ESD/HBM 4 kV and latchup triggering current 150 mA tests, thus accomplish the best optimization of ESD/latchup robustness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号